10

CHARAKTERYSTYKA MINERALOGICZNO-GEOCHEMICZNA OSADÓW WESTFALU LUBELSKIEGO ZAGŁĘBIA WĘGLOWEGO WZBOGACONYCH W MANGAN

10.1 WPROWADZENIE

Mangan (Mn) jest pierwiastkiem powszechnie występującym w skorupie ziemskiej. Należy on według klasyfikacji Goldschmidta (1922) do pierwiastków litofilnych, natomiast według Rankama i Sachama (1950) do grupy przejściowej pomiędzy pierwiastkami sulfofilnymi a oksyfilnymi [8]. Średnia zawartość Mn w górnej części skorupy ziemskiej wynosi 600 ppm a w jej dolnej części 1700 ppm [6]. Zawartość Mn w skałach osadowych związana jest z geochemicznym charakterem materiału okruchowego i warunkami redox środowiska sedymentacji [3, 12].

Mangan może występować w materiale okruchowym w minerałach maficznych, magnetycie i ilmenicie. Wzbogacenia w Mn osadów w strefie hipergenicznej związane są z procesami zachodzącymi przy udziale tlenu atmosferycznego, gdzie następuje utlenianie Mn²⁺ do Mn⁴⁺ [4, 12]. W warunkach tlenowych tlenki manganu czterowartościowego mogą wytrącać się w formie naskorupień na innych minerałach, jako dendryty lub w szczelinach i spękaniach [1, 9, 10]. W skałach okruchowych typu łupków lub wak udział Mn jest nieco wyższy niż w piaskowcach (odpowiednio 700 ppm i 170 ppm). W skałach węglanowych, zwłaszcza w dolomitach, udział Mn może sięgać 550 ppm, a w lessach wynosi średnio 560 ppm [7, 12].

W osadach tworzących się w warunkach dysoksycznych i anoksycznych obserwuje się obniżenie zawartości Mn związane z redukcyjnym rozpadem uwodnionych tlenków i wodorotlenków manganu [1, 2].

10.2 OPRÓBOWANIE I METODYKA BADAŃ

Przedmiotem badań była seria mułowcowo-iłowcowa formacji lubelskiej z wybranych otworów wiertniczych Lubelskiego Zagłębia Węglowego (LZW). Analizą objęto próbki skał z górnej części westfalu A (z poziomu morskiego Dunbarella kończącego serię paraliczną) oraz westfalu B, należącego do serii limnicznej z otworów wiertniczych Syczyn 7, Kulik i Borowo.

Badania geochemiczne skał obejmujące oznaczenie zawartości pierwiastków głównych i śladowych wykonane zostały za pomocą spektrometru emisyjnego (ICP-MS) z zastosowaniem metody pełnego roztwarzania (multi acid) w laboratorium ACME Analytical Laboratories Ltd (Kanada). W skałach każdego z otworów wiertniczych stwierdzono poziomy z podwyższoną zawartością Mn. Dla tych próbek (o współczynniku wzbogacenia Ef > 1) wykonano szczegółowe badania petrograficzne obejmujące analizy makro i mikroskopowe, analizy XRD (dla wybranych próbek) oraz oznaczenia zawartości wybranych pierwiastków. Analizy wykonano dla 31 próbek o podwyższonej zawartości Mn i dla 3 próbek o niskiej celach porównawczych. Szczegółową zawartości Mn W charakterystykę opróbowania przedstawiono w tab. 10.1, 10.2 i 10,3.

		m ppt	próbki	manganu Mn (ppm)	litologiczny
664,4 (strop karbonu)	limniczna- westfal B	694,5	S20	412	mułowiec
		698,8	S19b	1021	mułowiec
		706,2	S18	852	mułowiec
		748,3	S13	999	mułowiec
		811,7	S9	1247	iłowiec
		815,8	S7a	961	mułowiec
		817,8	S6	2309	mułowiec
		860,3	S4	717	mułowiec
883,6	paraliczna - górny westfal A	889,8	S01m	680	iłowiec
	m ppt. 664,4 (strop karbonu) 883,6 890	m ppt.PC664,4 (strop karbonu)-883,6Iimniczna - westfal B883,60888	m ppt. 000 11 664,4 698,8 698,8 706,2 748,3 811,7 811,7 815,8 817,8 860,3 883,6 883,6 - grad base 890 - grad base	m ppt. 000 11 1 664,4 500 694,5 520 664,4 698,8 519b (strop karbonu) 11 748,3 513 811,7 59 815,8 57a 817,8 56 860,3 54 883,6 - - 889,8 501m	m ppt. 000 11 1 Mn (ppm) 664,4 698,8 519b 1021 664,4 706,2 518 852 748,3 513 999 811,7 59 1247 815,8 57a 961 817,8 56 2309 860,3 54 717 883,6 ing so finance of the set

Tabela 10.1 Charakte	rystyka opróbowania	- otwór wiertniczy Syczyn 7

Tabela 10.2 Charakterystyka opróbowania – otwór wiertniczy Kulik

Otwór wiertniczy	Zakres głębokości m ppt.	Seria/Pozycja stratygraficzna	Głębokość m ppt	Numer próbki	Koncetracja manganu Mn (ppm)	Typ litologiczny
		limniczna- westfal B	688,5	Q23	812	mułowiec
	687,2 (strop karbonu)		709,6	Q21	1120	iłowiec
			759,0	Q16	909	mułowiec
			766,0	Q15	531	mułowiec
			770,6	Q14	347	iłowiec
			797,6	Q12	592	mułowiec
lik			832,5	Q11	728	mułowiec
Ku			838,5	Q10	702	mułowiec
			868,6	Q6b	574	iłowiec
	951,6	czna - vestfal 1	957,4	Q15m	933	iłowiec
	960,0	parali górny v ł	959,4	Q3m	1416	iłowiec

Otwór wiertniczy	Zakres głębokości m ppt.	Seria/Pozycja stratygraficzna	Głębokość m ppt	Numer próbki	Koncetracja manganu Mn (ppm)	Typ litologiczny					
	675,5 (strop karbonu)	limniczna- westfal B	701,9	B49	588	mułowiec					
			715,2	B44	1715	iłowiec					
			736,4	B39	1710	mułowiec					
rowo			769,3	B32	972	mułowiec					
			sna il B	778,8	B30	992	mułowiec				
			792,0	B29	777	mułowiec					
			805,3	B27	1389	iłowiec					
				814,6	B25	810	mułowiec				
Bo			848,6	B17	310	mułowiec					
			890,7	B10b	877	mułowiec					
			915,6	B2	742	mułowiec					
	921,1	raliczna górny estfal A	924,5	B27m	1370	iłowiec					
	930		928,4	B14m	749	iłowiec					
			ral gó est	ral gó est	ral gó est	ral gó est	ral gó est	ral gó est	ral gó est	928,6	B10m
		pa v	929,0	B6m	782	iłowiec					

Tabela 10.3 Charakterystyka opróbowania – otwór wiertniczy Borowo

10.3 CHARAKTERYSTYKA PETROGRAFICZNA PRÓBEK

Wytypowane do badań próbki skał, pochodzace z serii limnicznej i paralicznej LZW, należą do iłowców i mułowców.

Próbki z serii paralicznej pod względem litologicznym stanowią iłowce o ciemnoszarej barwie, posiadają strukturę pelitową lub miejscami pelitowoaleurytowa (z uwagi na obecność domieszek aleurytowgo kwarcu). Wykazują teksturę zbitą, w różnym stopniu złupkowaconą. Na podstawie jakościowych analiz mikroskopowych stwierdzono w nich obecność minerałów ilastych, kwarcu oraz miejscami rozproszony syderyt. Analizy XRD wykonane dla próbek B14m i S01m potwierdziły ich skład mineralny. Stwierdzono głównie obecność minerałów ilastych (kaolinitu i illitu), kwarcu oraz syderytu (rys. 10.1).

Rys. 10.1 Dyfraktogram iłowca (próbka B14m) z serii paralicznej LZW Objaśnienia: K - kaolinit, I - illit, Q - kwarc, S - syderyt

Próbki z serii limnicznej rozpoznane jako iłowce charakteryzuja się nieco jaśniejszą barwą, typową pelitową strukturą i zbitą, czasami kierunkową teksturą.

2016

Na podstawie analiz mikroskopowych w próbkach iłowców stwierdzono obecność minerałów ilastych, kwarcu i syderytu w postaci rozproszonej lub kulistych skupień. Dyfraktogramy potwierdzają ten skład mineralny, a na dyfraktogramach wyraźnie zaznaczyły się refleksy syderytu (rys. 10. 2).

Objaśnienia: K – kaolinit, I – illit, Q – kwarc, S – syderyt

Skały rozpoznane makroskopowo jako mułowce wykazują aleurytową strukturę, teksturę zbitą, zazwyczaj bezładną. Barwa mułowców jest szara lub ciemnoszara. W składzie mineralnym występują głównie minerały ilaste, kwarc i łyszczyki (przewaga muskowitu). W obrazie mikroskopowym obok wymienionych minerałów stwierdzono obecność zwietrzałych plagioklazów i bardzo nieliczne okruchy skał zawierające głównie kwarc. W mułowcach stwierdzono także zmienny udział węglanów (nieliczne krystaliczne skupienia syderytu). Ich spoiwo ma charakter krzemionkowo-węglanowo-ilasty, rzadziej syderytyczny, typu masy podstawowej. Skład mineralny określony makroskopowo potwierdziły badania metodą dyfrakcji rentgenowskiej (rys. 10.3).

Rys. 10.3 Dyfraktogram mułowca (próbka S6) z serii limnicznej LZW Objaśnienia: K – kaolinit, I – illit, Q – kwarc, M – muskowit, S – syderyt, A – skalenie

2016 z. 5(17)

Analizy petrograficzne próbek zawierających niskie koncentracje Mn (2 próbki mułowca i 1 iłowca z serii limnicznej) wykazały skład mineralny podobny do odpowiadających im typów litologicznych próbek przedstawionych wyżej. Jedyna istota różnica polegała na znacznie niższym udziale syderytu (rys. 10. 4).

Rys. 10.4 Dyfraktogram mułowca (próbka B17) z serii limnicznej LZW Objaśnienia: K – kaolinit, I – illit, Q – kwarc, S – syderyt, A – plagioklazy

10.4 ZMIENNOŚĆ KONCENTRACJI MANGANU W OSADACH WESTFALU LZW

Oznaczenia manganu w osadach westfalu LZW wykazały jego zmienną zawartość w profilach otworów wiertniczych Syczyn 7, Kulik i Borowo. W celu zniwelowania zróżnicowanego składu mineralnego skał obliczono wskaźnik wzbogacenia w Mn (enrichment factor Ef_{Mn}) dla analizowanych próbek. Wskaźnik ten uwzględnia zawartość Al w próbce i średnią zawartość danego pierwiastka w skorupie ziemskiej lub w łupkach (tab. 10.4). Średnie zawartości Mn w próbkach z serii limnicznej dla każdego z otworów wiertniczych są wyższe niż dla próbek serii paralicznej (tab. 10.5).

Pierwiastki	Średnia – górna część skorupy ziemskiej [11]
Mn [ppm]	600,00
Ni [ppm]	44,00
V [ppm]	107,00
Fe [%]	3,50
Ca [%]	3,00
Mg [%]	1,33
Al [%]	8,04

Tabela 10.4 Średnie zawartości wybranych pierwiastków w skorupie ziemskiej

		Otwór wiertniczy	Syczyn 7		Kulik		Borowo		Sumarycznie	
	Pierwiastek	Seria	seria limniczna	seria paraliczna	seria limniczna	seria paraliczna	seria limniczna	seria paraliczna	seria limniczna	seria paraliczna
		Liczba próbek	18	13	19	12	21	14	58	39
		średnia	781	508	657	633	779	628	740	590
an	Mn	odch std.	546	122	199	333	426	284	389	245
ang	(ppm)	min	383	391	347	283	229	360	229	283
M N		max	2309	686	1120	1416	1715	1370	2309	1416
	Ef мn	średnia	1,35	0,74	1,10	0,89	1,17	1,14	1,20	0,93
		średnia	4,37	3,94	3,76	3,80	4,88	4,08	4,35	3,95
0	Fe	odch std.	2,96	0,34	0,64	0,54	3,47	1,42	2,38	0,79
elaz	(%)	min	1,53	3,09	3,22	2,97	2,49	3,31	1,53	2,97
Ż		max	13,58	4,34	4,66	4,56	15,70	8,08	15,70	8,08
	Ef Fe	średnia	1,27	0,98	1,10	0,93	1,26	1,17	1,21	1,03
		średnia	149	121	134	120	159	118	148	120
р	v	odch std.	51	6	21	11	67	24	47	14
ana	(ppm)	min	110	113	111	109	78	60	78	60
		max	315	133	171	145	205	154	315	154
	Ef v	średnia	1,39	0,98	1,28	0,96	1,27	0,96	1,31	0,97
		średnia	57,9	66,5	54,3	69,1	68,8	66,5	60,7	67,3
	Ni	odch std.	32,6	9,4	21,5	9,0	43,1	13,2	32,8	10,6
likie	(ppm)	min	37,7	44,1	35,4	59,5	39,3	31,1	35,4	31,1
		max	152,0	77,0	117,7	80,5	236,1	78,8	236,1	80,5
	Ef _{Ni}	średnia	1,28	1,31	1,23	1,30	1,35	1,30	1,29	1,30
		średnia	0,31	0,31	0,20	0,34	0,26	1,31	0,26	0,68
Ď,	Са	odch std.	0,28	0,07	0,06	0,06	0,14	3,04	0,16	1,13
Vap	(%)	min	0,10	0,26	0,12	0,28	0,12	0,22	0,10	0,22
		max	1,04	0,44	0,36	0,45	0,56	9,95	1,04	9,95
	Ef _{Ca}	średnia	0,10	0,09	0,07	0,10	0,07	0,65	0,08	0,29
		średnia	0,98	1,20	0,85	1,15	1,16	1,48	1,00	1,29
ez	Mg	odch std.	0,58	0,16	0,21	0,13	1,25	1,18	0,70	0,52
agn	(%)	min	0,49	0,77	0,62	0,97	0,49	1,05	0,49	0,77
Σ		max	1,19	1,38	1,09	1,41	6,25	4,84	6,25	4,84
	Ef_{Mg}	średnia	0,74	0,79	0,69	0,73	0,80	1,25	0,75	0,94

Tabela 10.5 Zawartość wybranych pierwiastków i ich wskaźniki wzbogacenia (EF) w serii limnicznej i paralicznej LZW

Wskaźnik wzbogacenia wyraża się formułą [5]:

$$Ef = \frac{\frac{El_s}{Al_s}}{\frac{El_{av}}{Al_{av}}}$$

gdzie:

Els - zawartość oznaczanego pierwiastka w próbce (ppm),

Al_s – zawartość Al w próbce (%),

Elav – średnia zawartość oznaczanego pierwiastka w skorupie ziemskiej (ppm),

Alav – średnia zawartość Al w skorupie ziemskiej (%).

Średni wskaźnik wzbogacenia w Ef_{Mn} potwierdza nieco wyższą zaawartość Mn w serii limnicznej.

Przeanalizowano ponadto zawartość żelaza, wanadu, niklu, wapnia i magnezu w próbkach serii paralicznej i limnicznej uwzględniając zarówno średnią zawartość tych pierwiastków, jak i obliczone wskaźniki wzbogacenia Ef (tab. 10.5).

Dla Fe i V wskaźniki wzbogacenia wyznaczone dla serii limnicznej i paralicznej wykazują podobną tendencję jak w przypadku Mn. Średnie wskaźniki wzbogacenia są wyższe dla serii limnicznej niż paralicznej.

Średnia zawartość Ni oraz wskaźnik wzbogacenia Ef_{Ni} wykazują podobne wartości w próbkach serii limniczej i paralicznej.

Zawartość wapnia i magnezu w próbkach serii limniczej i paralicznej jest niewielka co wyraźnie widać w wartości ich wskaźników wzbogacenia Ef_{Ca} i Ef_{Mg} .

10.5 ZMIENNOŚĆ KONCENTRACJI WYBRANYCH PIERWIASTKÓW W POZIOMACH WZBOGACONYCH W MANGAN

Analiza zawartości wybranych pierwiastków w próbkach o podwyższonej koncentracji Mn wykazała wyraźnie zaznaczające się prawidłowości. W próbkach tych przeanalizowano koncentracje żelaza Fe, V, Ni, Ca i Mg wyrażone wskaźnikiem wzbogacenia (Ef) (rys. 10.5, 10.6 i 10.7).

Zawartość Fe jest podwyższona we wszystkich próbkach wyraźnie wzbogaconych w Mn. W przypadku wskaźnika wzbogacenia Ef_{Mn} niewiele przekraczającego wartość 1, wzbogacenie w Fe nie zawsze jest obserwowane. Porównanie koncentracji Mn i Fe (wyrażonej współczynnikami wzbogacenia) w próbkach wykazało silną korelację pomiędzy tymi wartościami (współczynnik korelacji r = 0,90) (rys. 10.8).

Podwyższonej koncentracji Mn i Fe towarzyszy często podwyższona zawartość

2016 z. 5(17)

V, przy czym dotyczy to przede wszystkim próbek z serii limnicznej. Porównanie zawartości Mn i V (wyrażonej współczynnikami wzbogacenia) dla całej serii próbek wykazało słabą korelację pomiędzy tymi wartościami (współczynnik korelacji r = 0,68) (rys. 10.9).

Rys.10.8 Korelacja pomiędzy wskaźnikami wzbogacenia dla Mn (Ef_{Mn}) i Fe (Ef_{Fe})

Rys.10.9 Korelacja pomiędzy wskaźnikami wzbogacenia dla Mn (Ef_{Mn}) i V (Ef_V)

Zawartość Ca w analizowanych próbkach jest bardzo niska i wykazuje słabą

korelację z zawartością Mn (współczynnik korelacji r = 0,62) (rys. 10.10). Koncentracje Mg i Ni są bardzo zróżnicowane i nie wykazują korelacji z koncentracją Mn.

Rys.10.10 Korelacja pomiędzy pomiędzy wskaźnikami wzbogacenia dla Mn (Ef_{Mn}) i Ca (Ef_{Ca})

W kilku próbkach podwyższonemu udziałowi Mn towarzyszy podwyższony udział Ni lub/i Mg (rys. 10.11 i 10.12).

Rys.10.11 Korelacja pomiędzy wskaźnikami wzbogacenia dla Mn (Ef_{Mn}) i Mg (Ef_{Mg})

Rys.10.12 Korelacja pomiędzy wskaźnikami wzbogacenia dla Mn (Ef_{Mn}) i Ni (Ef_{Ni})

10.6 PODSUMOWANIE

Średnia zawartość manganu w próbkach z serii limnicznej osadów westfalu LZW wynosi 740 ppm i jest nieco wyższa niż w próbkach serii paralicznej – 590 ppm (tab. 10.5). W każdej z serii stwierdzono obecność poziomów z podwyższoną koncentracją Mn czyli takich dla których współczynnik wzbogacenia Ef_{Mn} jest większy od 1. Koncentracja Mn dla tych poziomów wynosi w serii paralicznej od 680 do 1419 ppm, a w serii limnicznej od 531 do 2309 ppm.

Badania petrograficzne iłowców i mułowców o podwyższonej koncentracji Mn wykazały typowy skład petrograficzny dla tych odmian litologicznych, a dodatkowo stwierdzono obecność syderytu w postaci rozproszonej, krystalicznej, w postaci kulistych skupień, a rzadziej w charakterze składnika spoiwa w mułowcach.

Badania zawartości wybranych pierwiastków wykazały, że we wszystkich próbkach wyraźnie wzbogaconych w Mn koncentracja Fe jest również podwyższona, a pomiędzy wartościami wskaźników wzbogacenia Ef_{Mn} i Ef_{Fe} występuje silna korelacja. Stwierdzono ponadto, że podwyższonej koncentracji Mn czasami towarzyszy podwyższona zawartość V, Ni lub Mg.

Podwyższona zawartość Fe i obecność syderytu w próbkach o wysokiej koncentracji Mn wskazuje, iż Mn może stanowić domieszkę w syderycie. W próbkach skał o niewielkiej zwartości Mn stwierdzono znacznie niższy udział syderytu w składzie petrograficznym. Warunki krystalizacji węglanowych minerałów Mn²⁺ i Fe²⁺w środowisku wodnym są zbliżone co powoduje częstą obecność domieszek manganowych w syderytach. Podwyższone koncentracje manganu są charakterystyczne dla osadów deponowanych w warunkach z dostępem tlenu, gdzie zachodzi proces utleniania Mn²⁺ do Mn⁴⁺ [4, 12].

LITERATURA

- [1] S.E. Calvert, T.F. Pedersen. "IGeochemistry of Recent oxic and anoxic marine sediments: implications for the geologic record", *Mar. Geol.* 113, 1993, pp. 67-88.
- [2] A.M. Cruse, T.W. Lyons. "Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales", *Chemical Geology* 206, 2004, pp. 319-345.
- [3] L.D. Hylander, M. Meili, L. J. Oliveira, E de Castro e Silva, J.R.D. Guimarães, D.M. Araujo, R.P. Neves, R. Stachiw, A.J.P. Barros, G.D. Silva. "Relationship of mercury with aluminum, iron and manganese oxy-hydroxides in sediments from the Alto Pantanal, Brazil" in *Science of The Total Environment*, vol. 260, issues 1-3, 2000, pp. 97-107.
- [4] Kabata-Pendias, H. Pendias. *Biogeochemia pierwiastków śladowych*. PWN, Warszawa. Wydanie drugie zmienione, 1999.
- [5] H. Kombrink, B.J.H. van OS, C.J. van der Zwan, Th.E. Wong. "Geochemistry of marine and lacustrine bands in the Upper Carboniferous of the Netherlands". *Journal of Geosciences – Geologie en Mijnbouw*, 2008. p. 309-322.
- [6] S.M. McLennan. "Relationships between the trace element composition of sedimentary rocks and upper continental crust in Geochem", *Geophys. Geosyst.* (G3) 2 (paper # 2000GC000109) 2001.
- [7] S.M. McLennan, R. W. Murray. Geochemistry of Sediments in: *Encyclopedia of Geochemistry*, W.F. McDonough, C.P. Marshall, and R.F. Fairbridge, Kluwer Academic Publishers, Dordrecht 1999, pp. 282-292.
- [8] A. Polański. *Podstawy Geochemii*. Wyd. Geol. Warszawa 1988.
- [9] R. Salminen (Chief Editor), M.J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos. XLIII, No 5 2359 Ψηφιακή Βιβλιοθήκη Θεόφραστος Τμήμα Γεωλογίας. Α.Π.Θ. Μ. Duris , A. Gilucis, V. Gregorauskiene, J. Halamic, P. Heitzmann, A. Lima, G. Jordan, G. Klaver, P. Klein, J. Lis, J. Locutura, K. Marsina, A. Mazreku, P.J. O'Connor, S.A. Olsson, R.T. Ottesen, V. Petersell, J.A. Plant, S. Reeder, I. Salpeteur, H. Sandström, U. Siewers, A. Steenfelt, T. Tarvainen, *FOREGS Geochemical Atlas of Europe*, Part 1: Background Information, Methodology and Maps. Geological Survey of Finland, Espoo 526, 2005, pp. Available online at: http://www.gtk.fi/publ/foregsatlas/ (last accessed on 17/1/2010).
- [10] E.R. Sholkovitz, D. Copland. "The coagulation, solubility and adsorption properites of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water, *Geochim. Cosmochim". Acta* 45, 1981, pp. 181-189.
- [11] S.R. Taylor, S. McLennan. *The continental crust its composition and evolution*, Blackwell, Oxford, 1985., pp. 312.
- [12] K.H. Wedepohl. "Manganese" In *Handbook of Geochemistry*, Vol.II, ed. by K. H. Wedepohl, Springer, Berlin, 1978,pp. 25-B-25-O

CHARAKTERYSTYKA MINERALOGICZNO-GEOCHEMICZNA OSADÓW WESTFALU LUBELSKIEGO ZAGŁĘBIA WĘGLOWEGO WZBOGACONYCH W MANGAN

Streszczenie: W pracy przedstawiono wyniki badań petrograficznych i geochemicznych iłowców i mułowców z serii paralicznej i limnicznej (westfal A i B) Lubelskiego Zagłębia Węglowego zawierających podwyższone zawartości manganu. Analizy geochemiczne obejmowały oznaczenie zawartości Fe, V, Ca, Mg i Ni oraz ich korelacje z zawartością Mn. Badania wykazały, że we wszystkich próbkach wyraźnie wzbogaconych w Mn zawartość Fe jest również podwyższona, a pomiędzy wartościami wskaźników wzbogacenia Ef_{Mn} i Ef_{Fe} występuje silna korelacja. Stwierdzono ponadto, że podwyższonej zawartości Mn czasami towarzyszy podwyższona zawartość V, Ni lub Mg.

Słowa kluczowe: seria para liczna, seria limniczna, westfal A i B, formacja lubelska, mangan, wskaźnik wzbogacenia

MINERALOGICAL AND GEOCHEMICAL CHARACTERIZATION DEPOSITS FROM THE WESTPHALIAN OF THE LUBLIN COAL BASIN ENRICHED IN MANGANESE

Abstract: The paper presents the results of petrographic and geochemical researches of the claystones and mudstones with high content of Mn from paralic and limnic series (Westphalian A and B) of the Lublin Coal Basin. Geochemical analysis included the content of Fe, V, Ca, Mg and Ni and their correlation with the content of Mn. Studies have shown that, for all samples significantly enriched in Mn concentration of Fe is also high and the correlation between the values of the enrichment factor Ef_{Mn} and Ef_{Fe} is very strong. It was also found that the increased content of Mn sometimes is accompanied by increased content of V, Ni or Mg.

Key words: paralic series, limnic series, Westphalian A i B, Lublin formation, manganese, enrichment factor

dr inż. Magdalena Kokowska-Pawłowska	dr Ewa Krzeszowska
Politechnika Śląska,	Politechnika Śląska,
Wydział Górnictwa i Geologii	Wydział Górnictwa i Geologii
Instytut Geologii Stosowanej	Instytut Geologii Stosowanej
ul. Akademicka 2, 44-100 Gliwice e-mail: magdalena.kokowska-pawlowska@polsl.pl	ul. Akademicka 2, 44-100 Gliwice e-mail: ewa.krzeszowska@polsl.pl

Data przesłania artykułu do Redakcji:06.2016Data akceptacji artykułu przez Redakcję:09.2016